Evaluation of Electromagnetic Measuring Technique of Tip Position of Nasogastric Tube using Evolution Strategy
Yuji Gotoh1, Atsushi Nakamura1, Yoshitaka Miyazaki2, and Norio Takahashi3, Fellow, IEEE

1Department of Mechanical and Energy Systems Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan, goto-yuji@oita-u.ac.jp
2Yufuin Kouseinenkin Hospital, 252 Kawaminami, Yufuin 879-5193, Japan, ymiya0704@sc4.so-net.ne.jp
3Department of Electrical and Electronic Engineering, Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama 700-8530, Japan, norio@okayama-u.ac.jp

Abstract — Since a swallowing difficulty patient cannot take a meal by himself, liquid food is poured with the tube (nasogastric tube) that is inserted from a nose to the stomach. It may be inserted into lungs by a mistake. It will become a fatal situation if the nutrition is poured in with incorrect insertion. In this paper, the measuring technique of the position of the tip of the tube by detecting the alternating magnetic field excited from the outside of the human body was proposed. It is shown that the maximum error of positioning is less than 10mm by the experiment in a human body in the clinical test, and then the proposed technique can be applicable in an actual hospital.

I. INTRODUCTION

A nutrition is poured into the stomach of a patient who has a difficulty in swallowing etc., using the tube (nasogastric tube) made of resin. When the tube is inserted from the hole of a nose to the stomach of the patient by a doctor or a nurse, it may be inserted into lungs by mistake. It will become a fatal situation if the nutrition is poured in with incorrect insertion. In Japan, the accident by this incorrect insertion is caused about 8% every year.

In this paper, the inspection technique of the position of the tip of the tube inside the human body was examined by detecting the alternating magnetic field excited from ten positions on the surface of abdomen of the human body. The position of the tip tube is determined by the evolution strategy [1] using the ac magnetic field detected by the search coil. In addition, the clinical test by a human body is also carried out.

II. MODEL AND METHOD OF ANALYSIS

A. Inspection Model

Fig.1 shows the proposed model for detecting the tip position of the inner tube inside the human body. The dimension of the inner tube with 3-axis squared search coil (3x20turns) inserted from the hole of a nose to the stomach is 4mm (diameter) and 1.3m (length). Fig.2 shows the arrangement of the search coil at the tip part of the nasogastric tube. Fig.3 shows the model of ten alternating (ac) exciting coils arranged on the surface of abdomen of the human body. Moreover, the figure illustrates the magnetic moments \(m_k \) (k=1 to 10) that correspond to ten exciting coils. Ten ac exciting coils are constituted in the equilateral triangle whose length of one side is 150mm, and the ac magnetic field of 2.5kHz and 1000 ampere-turns is impressed. The ac-current is impressed in only one exciting coil alternately for 0.1 second, and the ac magnetic field is measured by the 3-axis squared search coil in the inner tube inserted in the inside of the body. Since the distance between the surface of abdomen and the inside of the stomach is about 150mm at the maximum, the maximum inspection domain of minus z-direction from the surface of the abdomen is set as 200mm.
B. Calculation of Tip Position in Nasogastric Tube

The ac exciting coils are defined as magnetic dipole. The ac magnetic field is produced by the magnetic moment m_k of the k-th coil. A current is fed in only one exciting coil alternately for 0.1 second among ten coils that are set on the human body. The flux density B_k produced from the k-th exciting coil is measured using the 3-axis squared search coil in the tip of the tube inside the human body. The position of the tip is calculated from the flux density measured by the 3-axis search coil using the evolution strategy. The distance r_k and the magnetic moment m_k are chosen as design variables. The initial value of r_k and m_k are set to 50mm and 0.024Am3, respectively.

The iteration process of calculation is as follows:
1) Calculation of flux density

The flux density B_k detected by the search coil excited by the k-th coil is calculated by

$$ B_k = \frac{\mu_0}{4\pi} \left(3\left(\frac{m_k - r_k}{r_k^3}\right) - \frac{m_k}{r_k} \right) $$

where, m_k is the magnetic moment of the k-th exciting coil, r_k is the distance between the k-th exciting coil and the search coil. The calculations are iterated ten times ($k=1$-10) for ten excitation coils.

2) Calculation of objective function

The following objective function W is calculated:

$$ W = \sum [\|p_i\| - |\|p_i\||] $$(2)

3) Calculation of distance r_k and magnetic moment m_k

The normal random number $N(0, \sigma^2)$ (σ: standard deviation) is added to each distance r_k. The convergence criterion of the standard deviation σ of r_k and m_k are set to 2.25 and 1.125, respectively. The constraint of design variables of r_k and m_k are chosen as $0 < r_k < 200$mm, and $0 < m_k < 0.05$Am3, respectively.

Above process is iterated until the final result is obtained.

Table I

<table>
<thead>
<tr>
<th>Case</th>
<th>CT x, y, z (mm)</th>
<th>Proposed method x, y, z (mm)</th>
<th>Error ε (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>106, 64, -73</td>
<td>101, 56, -71</td>
<td>9.6</td>
</tr>
<tr>
<td>b</td>
<td>65, 68, -101</td>
<td>66, 60, -105</td>
<td>9.4</td>
</tr>
<tr>
<td>c</td>
<td>89.2, 36.2, -112.7</td>
<td>92.6, 36.1, -113.9</td>
<td>3.6</td>
</tr>
</tbody>
</table>

IV. Reference