Numerical Design Compatibility of Induction Motor with respect to Voltage and Current Source

Jihyun Ahn, Cheol-Gyun Lee, Yong-Jae Kim, Hyun-Kyo, Sang-Yong Jung, Member, IEEE

1School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
2Department of Electrical Engineering, Dong-Eui University, Busan, 614-714, Korea
3Department of Electrical Engineering, Chosun University, Gwangju, 501-759, Korea
4School of Electrical Engineering, Seoul National University, Seoul, 151-742, Korea

Abstract—In this paper, the optimal driving point is selected when identical torque is supplied in induction motor using current source. Moreover, induction motor using current source is compared with one using voltage source whether two models are interoperable and conformable. To verify, vector control is explained for selection of the optimal driving point. Also, the characteristic analysis for induction motor is performed by Finite Element Method (FEM). In addition, comparative analysis for the result, such as flux saturation, performance characteristic, and loss is conducted according to the optimal point in designing procedure. By the result of analysis above, the compatibility of analysis using current source is verified by comparing with the one using voltage source.

Index Terms—Induction motor, Vector control, Voltage source, Current source, Finite Element Method (FEM)

I. INTRODUCTION

Induction motor is long-time researched and has high reliability, fine structural robust and good industrial competitiveness. Especially in system requiring acceleration and transmission, the response on changing condition of speed and load is considerably fast and the driving characteristic in high speed region is qualitative. Therefore induction motor can be applied to various speed application such as servo-machines, spindle and actuation system for traction motor[1]-[2]. To realize this performance, the vector control of driving induction motor will be suitable method because it can make possible driving in wide speed range and field weakening driving by controlling rated voltage and current of inverter[3]. Thus in this paper, an optimal driving point is selected when analyzing current, considering voltage and current constraints on vector control of induction motor. Moreover, the analysis on characteristics is conducted by FEM and the result of it is compared with that of using general voltage source to verify conformance and interoperability[4].

II. CHARACTERISTIC OF INDUCTION MOTOR

Adjustable varying speed actuation of induction motor can be divided into three regions by adjusting voltage and frequency. In first region, constant torque region, torque has retained value under base speed and in second region, constant power region, power has retained value over base speed. Lastly, third region, characteristic region, has maintained maximum frequency over base speed. The characteristic curve of induction motor is in Fig. 1 as follows.

III. OPTIMAL POINT TO CURRENT SOURCE ANALYSIS

Voltage and current constraints of induction motor can be expressed in equation (1) and (2) by inverter capacity.

\[V_{ds}^{e+2} + V_{qs}^{e+2} \leq V_{smax}^2 \]
\[I_{ds}^{e+2} + I_{qs}^{e+2} \leq I_{smax}^2 \]

Torque of vector-controlled induction motor is shown as Fig. 2. The driving point producing maximum torque with minimum current is an intersection of ellipse by voltage constraint and current constraint, and that is point A in Fig. 2. However, \(d\)-axis current on that point is larger than rated \(d\)-axis current. It would result in the severe saturation of the magnetic circuit of the machine. In this case, \(d\)-axis current should be set as rated current. Therefore, the optimal driving point is set as point B in Fig. 2 and maximum available torque is decided only by \(q\)-axis current. Consequently, the maximum torque is always the same in constant torque region.

In constant power region, the ellipse by current constraint is decreased. So, the optimal driving point is moved by way of decreasing \(d\)-axis current and increasing \(q\)-axis current. The speed gets faster and when the ellipse by voltage constraint is located inside of ellipse by current constraint, both \(d\)-axis and \(q\)-axis current is decreased as shown in Fig. 2(a), which is in characteristic region[5].

Fig. 1 Characteristic Curve of Induction Motor

(a) Vector Control of Induction Motor
(b) Torque & Slip-Frequency

Fig. 2 Optimal Point of Current Source Analysis
As a result, in every region of induction motor, actuation the optimal point to produce maximum torque is in the way of increasing each frequency and it can be shown in the way of increasing slip frequency in Fig. 2(b). At the view of analysis of current source, the relationship between torque voltage and slip-frequency is shown on Fig. 3.

![Fig. 3 Torque-Voltage vs Slip-Frequency of Current Source Analysis](image)

IV. ANALYSIS OF VOLTAGE SOURCE

Most of Induction motor has been designed with the voltage source based on the equivalent circuit modeling and corresponding FEM. The result of voltage source analysis for induction motor is shown Fig. 4. Therefore, numerical analogy of the voltage source is identified for the compatibility to the one of the current source. In particular, the torque and voltage characteristics versus Slip-Frequency, shown in Fig. 3, will be the most critical one for analysis and design of Induction motor.

![Fig. 4 Voltage Source Analysis of Induction Motor](image)

V. RESULT

The results of current and voltage source analysis of induction motor are shown in legends of flux density distribution, torque-slip frequency, and loss in Table I. Especially in case of using current source, the optimal driving point B abovementioned is verified by comparing two different driving point.

<table>
<thead>
<tr>
<th>Current Source</th>
<th>Voltage Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>Point B</td>
</tr>
<tr>
<td>Magnetic Flux Density</td>
<td></td>
</tr>
</tbody>
</table>

![Magnetic Flux Density](image)

<table>
<thead>
<tr>
<th>Torque-Slip Frequency</th>
<th>Torque-Speed</th>
</tr>
</thead>
</table>

VI. CONCLUSION

In this paper, the characteristics of torque, voltage, and frequency are verified considering voltage and current constraints in designing by electromagnetic numerical analysis using FEM. Especially the frequency-analytic case of using current source, frequency and slip which are critical element to decide speed and torque of induction motor, are compared in two different driving point producing same torque. In addition, analysis using current source is compatible with general analysis using voltage source according to the result of characteristic analysis.

REFERENCES