The Adaptive Cross Approximation Technique for Volume Integral Method Applied to Nonlinear Magnetostatic Problems

B. Bannwarth(1), A. Carpentier(1), V. Le Van(1), O. Chadebec(1)(2), G. Meunier(1), J.-M. Guichon(1)
(1)G2ELab, Université de Grenoble (UMR CNRS 5269 - Grenoble-INP - Université Joseph Fourier), Grenoble, France
(2)GRUCAD/EEL/CTC/UFS, Florianópolis, SC 88040-900, Brazil
E-mail: Bertrand.Bannwarth@g2elab.grenoble-inp.fr

Abstract—The volume integral methods are particularly well suited to compute field in the air domain which don’t need to be meshed. However, their application leads to solve dense matrix systems. The Adaptive Cross Approximation (ACA) is an algebraic method allowing the compression of these matrices. This paper presents the ACA technique applied for a Volume Integral Method (VIM) in order to solve nonlinear magnetostatic problems.

Index Terms— Adaptive Cross Approximation, acceleration method, volume integral equations, magnetostatics, nonlinear resolution.

I. INTRODUCTION

Integral methods have many advantages over finite elements method such as: far interactions are computed accurately, and especially avoiding the mesh of the air. Their main drawback is the obtaining of a full interaction matrix whose computation time and memory size increase in a quadratic complexity. Many methods have been developed to limit this drawback. The Fast Multipole Method (FMM) [1] is one of the most successful approaches. However this method presents some difficulties in regard to the algorithm parallelization and to the solver preconditioning.

The Adaptive Cross Approximation [2] has been successfully applied for many integral methods such as the Boundary Element Method [3] and the Moment Method [4]. This approach is less intrusive in the source code, allows better solver preconditioning than the FMM and is easily parallelizable.

In this paper, the application of ACA for the Volume Integral Method to solve nonlinear magnetostatic problems is presented. The section II presents the integral formulation using magnetic scalar potential. The section III introduces the resolution of the nonlinear magnetostatic problems. The outlines of the ACA and of the hierarchical matrix methods are described in the section IV. The section V is dedicated to a numerical example.

II. VOLUME INTEGRAL EQUATION FORMULATION

Let us consider a ferromagnetic material placed in a static magnetic source field \(\mathbf{H}_0 \). The magnetic behavior law is defined by:

\[
\mathbf{M} = \chi(H) \mathbf{H} ,
\]

where \(\mathbf{M} \) is the magnetization, \(\mathbf{H} \) the magnetic field and \(\chi \) the magnetic susceptibility. Let us consider that the material region is simply connected and containing no current sources.

The magnetic fields \(\mathbf{H} \) and \(\mathbf{H}_0 \) derive then respectively from the magnetic scalar potential \(\Phi \) and \(\Phi_0 \). The volume integral method [5] is used and we can write:

\[
\Phi(r) + \frac{1}{4\pi} \iiint V \chi(\mathbf{H}) \nabla \Phi(r') \cdot \frac{r-r'}{|r-r'|} dV = \Phi_0(r) .
\]

where \(V \) is the volume of the material, \(r \) and \(r' \) are respectively the coordinates of computation and integration points.

Only the material region is meshed and the magnetic scalar potential is discretized with first order nodal shape functions. A collocation approach applied on (2) at the \(N \) mesh nodes leads to a system of algebraic linear equations:

\[
([I] + [A(\chi)])\Phi = \Phi_0 ,
\]

where \([I]\) is the identity matrix and \([A]\) the full interaction matrix.

III. NONLINEAR FORMULATION

This part proposes a modified fixed point method [6] to solve the nonlinear magnetic field problem.

The behavior law (1) is written:

\[
\mathbf{M}(\mathbf{H}) = \chi_{FP} \mathbf{H} + \mathbf{S}(\mathbf{H}) ,
\]

where \(\chi_{FP} \) is the constant slope of the modified point scheme and \(\mathbf{S} \) the nonlinear residual. The fixed point can be found by iteratively updating the nonlinear residual. Using the behavior law (4) instead of (1) in the VIM (2), the following equation must be solved at each iteration:

\[
\Phi(k+1) + \frac{1}{4\pi} \iiint V \chi_{FP} \nabla \Phi(k+1) \cdot \frac{r-r'}{|r-r'|} dV = \Phi_0 + \frac{1}{4\pi} \iiint V \mathbf{S}(r', \chi_{FP}^{-1}) \cdot \frac{r-r'}{|r-r'|} dV ,
\]

where \(k \) is the iteration number. Using the previous formulation (2) and (3), the resolution of (5) leads to a system of algebraic linear equations of the form:

\[
([I] + [A(\chi_{FP})])\Phi = \Phi_0 + \mathbf{B}(\mathbf{S}^k) ,
\]

where \(\mathbf{B} \) is the contribution vector of the nonlinear residual. The value of the residual \(\mathbf{S} \) after the iteration \(k \) is given by:

\[
\mathbf{S}^{k+1} = \mathbf{M}(\mathbf{H}^k) - \chi_{FP} \mathbf{H}^k .
\]

If the norm of the difference of \(\chi \) between two iterations is lower than a given criterion, the algorithm is stopped.

The section IV introduces the parallelization and to the solver preconditioning.

The Fast Multipole Method (FMM) [1] is one of the most successful approaches. However this method presents some difficulties in regard to the algorithm parallelization and to the solver preconditioning.
IV. THE ADAPTIVE CROSS APPROXIMATION TECHNIQUE

A. Outline of the ACA technique

The ACA technique is based on the approximation of a block matrix by a product of two matrices of smaller sizes. This product approximates the initial matrix by one with a rank much lower but with a sufficient accuracy. If \mathbf{M}_{mn} is the considered $mn \times mn$ block matrix, its approximation $\tilde{\mathbf{M}}_{mpq}$ can be written as:

$$\tilde{\mathbf{M}}_{mn} = \mathbf{U}_{mp} \mathbf{V}_{pq},$$

where \mathbf{U}_{mp} and \mathbf{V}_{pq} are respectively $m \times p$ and $p \times n$ matrices. This decomposition is only useful if $p < \frac{1}{2} \min(m,n)$. If the block is sufficiently smooth, the p value can be sufficiently low to lead to a high compression rate. Due to the approximation property (8), the following estimate holds:

$$\left\| \mathbf{M}_{mn} - \tilde{\mathbf{M}}_{mn} \right\| \leq \varepsilon \left\| \mathbf{M}_{mn} \right\|,$$

where $\left\| \cdot \right\|$ denotes the Frobenius norm of a matrix, and ε is a given criterion. The full ACA algorithm is presented in [2].

The main advantage of ACA decomposition is that the evaluation of the entire matrix is not needed. Indeed, only the knowledge of p lines and p columns of the matrix is required. Therefore, it does not only decrease the needed memory, but also greatly limits the number of integral computations.

B. Hierarchical Matrices

To be efficient, the matrices to compress must involve interactions between distant subspaces where the integration kernel is smooth. To fulfill this criterion, the degrees of freedom in the mesh are renumbered. This task is performed with the help of a partition of the space thanks to an octree. A sub-matrix is classically evaluated by a full matrix computation. In the second case, the block is compressed with ACA.

For the nonlinear solving, the assembly of vector \mathbf{B} in (6) is decomposed into a product of the form:

$$\mathbf{B}(S) = [B_{x}] \begin{bmatrix} S_x \\ S_y \\ S_z \end{bmatrix},$$

where $[B_{x}]$, $[B_{y}]$, $[B_{z}]$ are assembly matrices of the derivative Green kernel and S_x, S_y, S_z are the three components of S. $[B_{x}]$, $[B_{y}]$, $[B_{z}]$ are built only once and only depend on the mesh geometry.

The ACA method combined with Hierarchical matrices are used to compute the first order matrix assembly $[A]$ in (4) and the matrices assembly $[B_{x}]$, $[B_{y}]$ and $[B_{z}]$ in (10).

V. NUMERICAL RESULTS

Let us consider the following contactor-like problem. The geometry description and the magnetic behavior law are described in Fig. 1a and 1b. The proposed procedure is applied for a mesh of 37000 elements.

REFERENCES