Calculation of eddy-current probe signal for a 3D defect using global series expansion

Sándor Bilicz, József Pávó, Szabolcs Gyimóthy

Budapest University of Technology and Economics
Dept. of Broadband Infocommunications and Electromagnetic Theory
Electromagnetic Theory Group
Hungary

IGTE Symposium 2012
Plan

1. Context
2. Challenges and existing solutions
3. Comparisons of the expansion functions
4. Illustrative examples
5. Conclusions
Context

- Eddy-Current Testing (ECT)
- Flaw reconstruction needs:
 - fast
 - reliable
 forward model + numerical solution
- Volumetric flaw model
- Integral equation scheme + Method of Moments
- **New basis functions for expansion**

The configuration:
- non-magnetic, conductive specimen
- time-harmonic excitation
- flaw = change of conductivity
- probe impedance variation at a set of probe positions
Classical challenges

- Excited region \gg flaw volume
 \rightarrow how to discretise the domain?

- Total probe impedance Z \gg variation of impedance ΔZ
 \rightarrow need for a direct formula for ΔZ

\downarrow

integral equation models, $\mathbf{E} = \mathbf{E}^i + \mathbf{E}^d$
- “thin cracks”: surface integral equation;
- “volumetric flaws”: volume integral equation
- reciprocity theorem – formula for ΔZ

- Numerical solution by the Method of Moments (MoM)
Today’s challenges

- Fast and reliable flaw characterisation
- Bad aspect ratio (flaw can be very thin)
- Volumetric model \rightarrow surface model
- Optimisation-based inversion – sensitivity data
- Surrogate model of the ECT simulator – “smooth forward operator”
- ...
Thin crack model

Planar crack in the $x = 0$ plane \rightarrow surface Γ on which no current flows through

$$E_n\big|_\Gamma = 0 : E^i_x(r_0) + \lim_{r \to r_0} \left[-j\omega\mu_0 \int_{\Gamma} G^{xx}(r, r') p(r') d\Gamma' \right] = 0; \quad r_0 \in \Gamma$$

Local approximation

![Local approximation diagram]

$$p(y, z) \approx \sum_{n=1}^{N} p_n \delta_n(y, z)$$

$$\delta_n(y, z) = \begin{cases}
1 & \text{on the } n\text{th} \\
0 & \text{elsewhere}
\end{cases}$$

$(Bowler, 1994.)$

Global approximation

![Global approximation diagram]

$$p(y, z) \approx \sum_{k=1}^{K} \sum_{l=1}^{L} p_{kl} v_{kl}(y, z)$$

$$v_{kl}(y, z) = \frac{\sin \frac{k\pi(y + B/2)}{B} \cos \frac{(2l - 1)\pi z}{D}}{\sin \frac{2\pi z}{D}}$$

$(Pávó & Lesselier, 2006.)$
Volumetric flaw model

Homogeneous conductivity σ_0 of the host locally changes to $\sigma(r)$ in the flaw V

$$
E(r) = E^i(r) - j\omega \mu_0 \int_V \mathcal{G}(r, r')P(r')dV';
$$

$$
P(r) = [\sigma(r) - \sigma_0]E(r)
$$

Local approximation

$$
P(x, y, z) \approx \sum_{n=1}^{N} P_n \delta_n(x, y, z)
$$

$$
\delta_n(x, y, z) = \begin{cases}
1 & \text{in the } n\text{th} \cr
0 & \text{elsewhere} \end{cases}
$$

(Bowler et al., 1991.)

Proposed herein, next slide...
The volumetric model with global expansion functions

\[\mathbf{P}(x, y, z) \approx \sum_{k=-K}^{K} \sum_{l=-L}^{L} \sum_{m=-M}^{M} \mathbf{P}_{klm} v_{klm}(x, y, z) \]

- Globally defined \(v_{klm}(x, y, z) \) expansion functions
- Orthogonal function set, our choice is the Fourier-basis:
 \[v_{klm}(x, y, z) = \exp \left[2\pi j \left(\frac{kx}{A} + \frac{ly}{B} + \frac{mz}{D} \right) \right] \]
- Other choices (e.g., Legendre or Chebyshev polynomials) are also possible
- Smooth approximation of \(\mathbf{P}(x, y, z) \)
- Many more advantages are expected...
Comparison of the local and global approximations

1. Convergence w.r.t. the discretisation

- **Local approximation, refinement**: $N_1 < N_2$:

 \[P^{(1)}(x, y, z) \approx \sum_{n=1}^{N_1} P_n^{(1)} \delta_n^{(1)}(x, y, z) \]

 \[P^{(2)}(x, y, z) \approx \sum_{n=1}^{N_2} P_n^{(2)} \delta_n^{(2)}(x, y, z) \]

 All basis functions change.

- **Global approximation, refinement**: $K_1 < K_2$, $L_1 < L_2$, $M_1 < M_2$:

 \[P^{(1)}(x, y, z) \approx \sum_{k=-K_1}^{K_1} \sum_{l=-L_1}^{L_1} \sum_{m=-M_1}^{M_1} P_{klm}^{(1)} \psi_{klm}(x, y, z) \]

 \[P^{(2)}(x, y, z) \approx \sum_{k=-K_2}^{K_2} \sum_{l=-L_2}^{L_2} \sum_{m=-M_2}^{M_2} P_{klm}^{(2)} \psi_{klm}(x, y, z) \]

 Basis functions from the previous stage can still be used, too.

 Higher coefficients are decreasing \Rightarrow convergence.
2. Flaw reconstruction via minimizing an objective function

Change in the defect size:

- Local approx.:
 - speeding-up by pre-calculated matrix elements
 - fixed cell-size → only discrete flaw sizes

- Global approx.:
 - all matrix elements have to be re-computed
 - the objective function is expected to be smooth
 - the same discretisation can be used for different flaw sizes
 - sensitivity is expected to be easier to compute numerically
Comparison of the local and global approximations

3. Computation of the matrix elements
(integrals of the Green’s function)

For planar specimens: analytical expressions exist for both...

- **Local:** \(\int \delta_{nt}(r) \left(\int_{z'} G(r, r') \delta_{ns}(r') \, \text{d}r' \right) \, \text{d}r \)
 - small, localised sources
 - field is sharp in the spatial domain, spectrally extensive

- **Global:** \(\int \sum_{k} v_{k t} l_{m t} (r) \left(\int_{z'} G(r, r') v_{k s} l_{m s} (r') \, \text{d}r' \right) \, \text{d}r \)
 - smooth (space-harmonic), extensive sources
 - field is smooth in the spatial domain, spectrally narrow

4. Restrictions for the flaw shape

- **Local:** arbitrary shapes can be assembled
- **Global:** must be rectangular parallelepiped
Illustrative examples

Zero-conductivity flaws (voids) are considered.
Surface and volumetric models vs. measured data #1

JSAEM OD–60 Benchmark 150 kHz

Flaw:
- length = 10 mm
- width = 0.21 mm
- depth = 0.5 mm

Legend:
maximal harmonic orders are shown
- volumetric KLM
- surface KL
Surface and volumetric models vs. measured data #2

Flaw:
- length = 10 mm
- width = 0.21 mm
- depth = 0.75 mm

Legend:
- maximal harmonic orders are shown
- volumetric KLM
- surface KL
Flaw:
- length = 12.6 mm
- width = 0.28 mm
- depth = 5 mm

Legend:
- maximal harmonic orders are shown
- volumetric KLM
- surface KL
Convergence w.r.t. the harmonics order

$\Delta Z_{KLM}(y_c)$: impedance variation on the line $y_c = 0 \ldots 10\text{ mm}$
computed by using maximal harmonic orders K, L and M.

$\Delta Z_{121}(y_c)$: the reference signal

$\| \cdot \|$: L_2 function norm

![Graph showing impedance convergence](image-url)
Conclusions

- ECT modeling problems are still challenging
- Volume integral method have been studied for decades
- New discretisation scheme: expansion by harmonic basis functions
 - Control over the convergence
 - Less sensitive to bad aspect ratios
 - Small change of flaw size → small change of signal
 - Smoother basis functions → well-behaved fields
 - Restrictions for the shape
- Good agreement with measurements even with low-order series
- Many more parametric studies and comparisons are needed
 (??? → commercial use ???)
